Понятия со словосочетанием «ограничивающая сфера»
Ограничивающая сфера (англ. bounding sphere, enclosing sphere, enclosing ball) — термин в компьютерной графике и вычислительной геометрии, один из типов ограничивающего объёма (англ. bounding volume). Ограничивающая сфера описывает ограниченную область пространства в виде шара, которая разделяет объекты внутри и снаружи неё. Для двухмерного пространства ограничивающая сфера является кругом (англ. bounding circle, enclosing circle).
Связанные понятия
Усечённая регрессия (англ. Truncated regression) или регрессия с урезанной выборкой — модель регрессии в условиях, когда выборка осуществляется только из тех наблюдений, которые, которые удовлетворяют априорным ограничениям, которые обычно формулируются как ограничение снизу и (или) сверху зависимой переменной. Урезание выборки приводит к смещенности МНК -оценок, поэтому оцениваются такие модели с помощью метода максимального правдоподобия.
Логистическая регрессия или логит-регрессия (англ. logit model) — это статистическая модель, используемая для прогнозирования вероятности возникновения некоторого события путём подгонки данных к логистической кривой.
Гомоскедастичность (англ. homoscedasticity) — однородная вариативность значений наблюдений, выражающаяся в относительной стабильности, гомогенности дисперсии случайной ошибки регрессионной модели. Явление, противоположное гетероскедастичности. Является обязательным предусловием применения метода наименьших квадратов, который может быть использован только для гомоскедастичных наблюдений.
Отношение предпочтения называется
слабо аддитивным (англ. weakly additive), если выполнено условие...
Скалярное ранжирование — подход к решению многокритериальных задач принятия решений, когда множество показателей качества (критериев оптимальности) сводятся в один с помощью функции скаляризации — целевой функции задачи принятия решения.
Конгруэнция — отношение эквивалентности на алгебраической системе, сохраняющееся при основных операциях. Понятие играет важную роль в универсальной алгебре: всякая конгруэнция порождает соответствующую факторсистему — разбиение исходной алгебраической системы на классы эквивалентности по отношению к конгруэнции.
Гауссовский процесс назван так в честь Карла Фридриха Гаусса, поскольку в его основе лежит понятие гауссовского распределения (нормального распределения). Гауссовский процесс может рассматриваться как бесконечномерное обобщение многомерных нормальных распределений. Эти процессы применяются в статистическом моделировании; в частности используются свойства нормальности. Например, если случайный процесс моделируется как гауссовский, то распределения различных производных величин, такие как среднее значение...
Двойственность, или принцип двойственности, — принцип, по которому задачи оптимизации можно рассматривать с двух точек зрения, как прямую задачу или двойственную задачу. Решение двойственной задачи даёт нижнюю границу прямой задачи (при минимизации). Однако, в общем случае, значения целевых функций оптимальных решений прямой и двойственной задач не обязательно совпадают. Разница этих значений, если она наблюдается, называется разрывом двойственности. Для задач выпуклого программирования разрыв двойственности...
Гетероскедастичность (англ. heteroscedasticity) — понятие, используемое в прикладной статистике (чаще всего — в эконометрике), означающее неоднородность наблюдений, выражающуюся в неодинаковой (непостоянной) дисперсии случайной ошибки регрессионной (эконометрической) модели. Гетероскедастичность противоположна гомоскедастичности, означающей однородность наблюдений, то есть постоянство дисперсии случайных ошибок модели.
Весовая функция — математическая конструкция, используемая при проведении суммирования, интегрирования или усреднения с целью придания некоторым элементам большего веса в результирующем значении по сравнению с другими элементами. Задача часто возникает в статистике и математическом анализе, тесно связана с теорией меры. Весовые функции могут быть использованы как для дискретных, так и для непрерывных величин.
Односторо́нний преде́л в математическом анализе — предел числовой функции, подразумевающий «приближение» к предельной точке с одной стороны. Такие пределы называют соответственно левосторо́нним преде́лом (или преде́лом сле́ва) и правосторо́нним преде́лом (преде́лом спра́ва).
Фу́нкция поле́зности — функция, с помощью которой можно представить предпочтения на некотором множестве альтернатив. Функция полезности является очень удобным вспомогательным средством, которое открывает возможность использования теории оптимизации при решении задачи потребителя. Без использования функции полезности решение такой задачи с математической точки зрения может быть затруднительным. С другой стороны, не каждое предпочтение может быть представлено с помощью функции полезности. Тем не менее...
Линейно-квадратичный регулятор (англ. Linear quadratic regulator, LQR) — в теории управления один из видов оптимальных регуляторов, использующий квадратичный функционал качества. Задача, в которой динамическая система описывается линейными дифференциальными уравнениями, а показатель качества представляет собой квадратичный функционал, называется задачей линейно-квадратичного управления. Широкое распространение получили линейно-квадратичные регуляторы (LQR) и линейно-квадратичные гауссовы регуляторы...
Обобщённый ме́тод моме́нтов (ОММ; англ. GMM — Generalized Method of Moments) — метод, применяемый в математической статистике и эконометрике для оценки неизвестных параметров распределений и эконометрических моделей, являющийся обобщением классического метода моментов. Метод был предложен Хансеном в 1982 году. В отличие от классического метода моментов количество ограничений может быть больше количества оцениваемых параметров.
Автокорреляция — статистическая взаимосвязь между последовательностями величин одного ряда, взятыми со сдвигом, например, для случайного процесса — со сдвигом по времени.
Вне́шне несвя́занные уравне́ния (англ. Seemingly Unrelated Regressions (SUR)) — система эконометрических уравнений, каждое из которых является самостоятельным уравнением со своей зависимой и объясняющими экзогенными переменными. Модель предложена Зельнером в 1968 году. Важной особенностью данных уравнений является то, что несмотря на кажущуюся несвязанность уравнений их случайные ошибки предполагаются коррелированными между собой.
В линейной алгебре обобщенное сингулярное разложение (ОСР) или обобщенное разложение по сингулярным значениям (GSVD - generalized singular value decomposition) — это разбиение прямоугольной матрицы с учетом ограничений, накладываемых на строки и столбцы матрицы. ОСР дает взвешенную обобщенную оценку наименьших квадратов данной матрицы с помощью матрицы более низкого ранга и, следовательно, при адекватном выборе ограничений ОСР реализует все линейные многомерные методы (например, каноническую корреляцию...
Подробнее: Обобщённое сингулярное разложение
Лине́йность по пара́метрам — свойство экономических моделей, позволяющее рассматривать их с эконометрической точки зрения (с точки зрения оценки параметров) как линейные модели.
Стандартные ошибки в форме Уайта или состоятельные при гетероскедастичности стандартные ошибки (HC s.e. — Heteroskedasticity consistent standard errors) — применяемая в эконометрике оценка ковариационной матрицы (в частности и стандартных ошибок) МНК-оценок параметров линейной модели регрессии, которая состоятельна при гетероскедастичности случайных ошибок модели, альтернативная стандартной (классической) оценке, которая в данном случае является несостоятельной.
Многокритериальная оптимизация, или программирование (англ. Multi-objective optimization) — это процесс одновременной оптимизации двух или более конфликтующих целевых функций в заданной области определения.
Стандартные ошибки в форме Ньюи-Уеста или состоятельные при гетероскедастичности и автокорреляции стандартные ошибки (HAC s.e. — Heteroskedasticity and Autocorrelation consistent standard errors) — применяемая в эконометрике оценка ковариационной матрицы МНК-оценок (в частности и стандартных ошибок) параметров линейной модели регрессии, альтернативная стандартной (классической) оценке, которая состоятельна при гетероскедастичности и автокорреляции случайных ошибок модели (в отличие от несостоятельной...
Многомерное шкалирование — метод анализа и визуализации данных с помощью расположения точек, соответствующих изучаемым (шкалируемым) объектам, в пространстве меньшей размерности чем пространство признаков объектов. Точки размещаются так, чтобы попарные расстояния между ними в новом пространстве как можно меньше отличались от эмпирически измеренных расстояний в пространстве признаков изучаемых объектов. Если элементы матрицы расстояний получены по интервальным шкалам, метод многомерного шкалирования...
В теории динамических систем, энтропия динамической системы — число, выражающее степень хаотичности её траекторий. Различают метрическую энтропию, описывающую хаотичность динамики в системе с инвариантной мерой для случайного выбора начального условия по этой мере, и топологическую энтропию, описывающую хаотичность динамики без предположения о законе выбора начальной точки.
Стохастическая аппроксимация — рекуррентный метод построения состоятельной последовательности оценок решений уравнений регрессии и экстремумов функций регрессии в задачах непараметрического оценивания. В биологии, химии, медицине используется для анализа результатов опытов. В теории автоматического управления применяется как средство решения задач распознавания, идентификации, обучения и адаптации.
Симплициальное множество (в ранних источниках — полусимплициальный компле́кс) — теоретико-категорная конструкция, обобщающая понятие симплициального комплекса и в определённом смысле моделирующая понятие топологического пространства с «хорошими» свойствами: теория гомотопий для симплициальных множеств эквивалентна классической теории гомотопий для топологических пространств. За счёт того, что является чисто алгебраической конструкцией, обеспечивает практически полный параллелизм с геометрическими...
Метод наименьших квадратов (МНК) — математический метод, применяемый для решения различных задач, основанный на минимизации суммы квадратов отклонений некоторых функций от искомых переменных. Он может использоваться для «решения» переопределенных систем уравнений (когда количество уравнений превышает количество неизвестных), для поиска решения в случае обычных (не переопределенных) нелинейных систем уравнений, для аппроксимации точечных значений некоторой функции. МНК является одним из базовых методов...
Модель упорядоченного выбора (упорядоченная регрессия, англ. ordered choice) — применяемая в эконометрике модель с упорядоченной (с ранжированными значениями) дискретной зависимой переменной, в качестве которой могут выступать, например, оценки чего-либо по пятибалльной шкале, рейтинги компаний и т. д. В рамках данной модели предполагается, что количество значений зависимой переменной конечно.
Риск (теория принятия решений) — математическое ожидание функции потерь вследствие принятия решения. Является количественной оценкой последствий принятого решения. Минимизация риска является главным критерием оптимальности в теории принятия решений.
Топологическая энтропия — в теории динамических систем неотрицательное вещественное число, которое является мерой сложности системы.
Экзогенность — буквально «внешнее происхождение» — свойство факторов (и важнейшее требование, предъявляемое к ним) эконометрических моделей, заключающееся в предопределённости, заданности их значений, независимости от функционирования моделируемой системы (явления, процесса). Экзогенность противоположна эндогенности. Значения экзогенных переменных определяется вне модели, и на их основе в рамках рассматриваемой модели определяются значения эндогенных переменных.
Целевая функция — вещественная или целочисленная функция нескольких переменных, подлежащая оптимизации (минимизации или максимизации) в целях решения некоторой оптимизационной задачи. Термин используется в математическом программировании, исследовании операций, линейном программировании, теории статистических решений и других областях математики в первую очередь прикладного характера, хотя целью оптимизации может быть и решение собственно математической задачи. Помимо целевой функции в задаче оптимизации...
Субдифференциал функции f, заданной на банаховом пространстве E — это один из способов обобщить понятие производной на произвольные функции. Хотя при его использовании приходится пожертвовать однозначностью отображения (значения субдифференциала в общем случае — множества, а не отдельные точки), он оказывается довольно удобным: любая выпуклая функция оказывается субдифференцируемой на всей области определения. В тех случаях, когда о дифференцируемости функции заранее ничего не известно, это оказывается...
Ограничением понятия - называется логическая операция, состоящая в прибавлении к содержанию понятия нового признака, наличие которого в содержании понятия сужает его объём. При этом исходное понятие будет родовым, а в результате его ограничения получается видовое понятие. Например, «движение ссудного капитала» - «международный кредит».
Подробнее: Ограничение понятий
Постоянная эластичность замещения (англ. constant elasticity of substitution, CES) — свойство, которым может обладать производственная функция или функция полезности. Постоянство эластичности замещения означает, что эластичность пропорции аргументов функции по отношению к пропорции их предельных продуктов будет неизменной при любых значениях аргументов. Функции с постоянной эластичностью замещения иногда называют функциями CES или CES-функциями по английской аббревиатуре данного термина. Некоторые...
Неприятие риска тесно связано с понятиями риск-нейтральной меры, используемым в оценивании производных финансовых инструментов и аппетита к риску, описывающего готовность инвестировать в высокорисковые финансовые инструменты.
Теория оценивания — раздел математической статистики, решающий задачи оценивания непосредственно не наблюдаемых параметров сигналов или объектов наблюдения на основе наблюдаемых данных. Для решения задач оценивания применяется параметрический и непараметрический подход. Параметрический подход используется, когда известна математическая модель...
Базисная функция — функция, которая является элементом базиса в функциональном пространстве. Базисная функция может также называться базисным вектором, если базис определен в линейном пространстве.
Система одновременных уравнений — совокупность эконометрических уравнений (часто линейных), определяющих взаимозависимость экономических переменных. Важным отличительным признаком системы «одновременных» уравнений от прочих систем уравнений является наличие одних и тех же переменных в правых и левых частях разных уравнений системы (речь идет о так называемой структурной форме модели, см. ниже).
Ко́мпле́ксный ана́лиз, тео́рия фу́нкций ко́мпле́ксного переме́нного (или ко́мпле́ксной переме́нной; сокращенно — ТФКП) — раздел математического анализа, в котором рассматриваются и изучаются функции комплексного аргумента.
Скользя́щая сре́дняя, скользя́щее сре́днее (англ. moving average, MA) — общее название для семейства функций, значения которых в каждой точке определения равны среднему значению исходной функции за предыдущий период.
Направленное множество в математике — непустое множество A с заданным на нем рефлексивным транзитивным отношением ≤ (то есть предпорядком), обладающее дополнительным свойством: у любой пары элементов из A есть верхняя грань в A.
Многоме́рное норма́льное распределе́ние (или многоме́рное га́уссовское распределе́ние) в теории вероятностей — это обобщение одномерного нормального распределения. Случайный вектор, имеющий многомерное нормальное распределение, называется гауссовским вектором.
Сглаживающий сплайн (англ. smoothing spline) это метод сглаживания (аппроксимации кривой набора зашумлённых исходных данных) с использованием сплайн-функций.
Выборочная дисперсия в математической статистике — это оценка теоретической дисперсии распределения, рассчитанная на основе данных выборки. Виды выборочных дисперсий...
Сходи́мость по ме́ре (по вероя́тности) в функциональном анализе, теории вероятностей и смежных дисциплинах — это вид сходимости измеримых функций (случайных величин), заданных на пространстве с мерой (вероятностном пространстве).
В математике, остаточным называют подмножество в пространстве Бэра, представимое как пересечение счётного числа открытых всюду плотных множеств. Эквивалентно, остаточное множество — дополнение до множества первой категории. В определённом смысле, можно считать, что остаточные множества — «большие» с топологической точки зрения.
Подробнее: Остаточное множество